Development of polymer acceptors for organic photovoltaic cells

66Citations
Citations of this article
105Readers
Mendeley users who have this article in their library.

Abstract

This review provides a current status report of the various n-type polymer acceptors for use as active materials in organic photovoltaic cells (OPVs). The polymer acceptors are divided into four categories. The first section of this review focuses on rylene diimide-based polymers, including perylene diimide, naphthalene diimide, and dithienocoronene diimide-based polymers. The high electron mobility and good stability of rylene diimides make them suitable for use as polymer acceptors in OPVs. The second section deals with fluorene and benzothiadiazole-based polymers such as poly(9,9'-dioctylfluorene-co-benzothiadiazole), and the ensuing section focuses on the cyano-substituted polymer acceptors. Cyano-poly(phenylenevinylene) and poly(3-cyano-4-hexylthiophene) have been used as acceptors in OPVs and exhibit high electron affinity arising from the electron-withdrawing cyano groups in the vinylene group of poly(phenylenevinylene) or the thiophene ring of polythiophene. Lastly, a number of other electron-deficient groups such as thiazole, diketopyrrolopyrrole, and oxadiazole have also been introduced onto polymer backbones to induce n-type characteristics in the polymer. Since the first report on all-polymer solar cells in 1995, the best power conversion efficiency obtained with these devices to date has been 3.45%. The overall trend in the development of n-type polymer acceptors is presented in this review. © 2014 by the authors.

Cite

CITATION STYLE

APA

Kim, Y., & Lim, E. (2014). Development of polymer acceptors for organic photovoltaic cells. Polymers. https://doi.org/10.3390/polym6020382

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free