Dioxo-molybdenum complexes have been reported as catalysts for the deoxydehydration (DODH) of diols and polyols. Here, we report on the DODH of diols using [Cp*MoO2]2O as catalyst (Cp*=1,2,3,4,5-pentamethylcyclopentadienyl). The DODH reaction was optimized using 2 mol % of [Cp*MoO2]2O, 1.1 equiv. of PPh3 as reductant, and anisole as solvent. Aliphatic vicinal diols are converted to the corresponding olefins by [Cp*MoO2]2O in up to 65 % yield (representing over 30 turnovers per catalyst) and 91 % olefin selectivity, which rivals the performance of other Mo-based DODH catalysts. Remarkably, cis-1,2-cyclohexanediol, which is known as quite a challenging substrate for DODH catalysis, is converted to 30 % of 1-cyclohexene under optimized reaction conditions. Overall, the mass balances (up to 79 %) and TONs per Mo achievable with [Cp*MoO2]2O are amongst the highest reported for molecular Mo-based DODH catalysts. A number of experiments aimed at providing insight in the reaction mechanism of [Cp*MoO2]2O have led to the proposal of a catalytic pathway in which the [Cp*MoO2]2O catalyst reacts with the diol substrate to form a putative nonsymmetric dimeric diolate species, which is reduced in the next step at only one of its Mo-centers before extrusion of the olefin product.
CITATION STYLE
Li, J., Lutz, M., & Klein Gebbink, R. J. M. (2020). A Cp-based Molybdenum Catalyst for the Deoxydehydration of Biomass-derived Diols. ChemCatChem, 12(24), 6356–6365. https://doi.org/10.1002/cctc.202001115
Mendeley helps you to discover research relevant for your work.