Dynamic analysis of wake characteristics of the circular cylinder with a dimpled surface

5Citations
Citations of this article
16Readers
Mendeley users who have this article in their library.

Abstract

In order to understand the wake characteristics for the circular cylinder with the dimpled structure, particle image velocimetry (PIV) and proper orthogonal decomposition (POD) method are used to measure and analyze the flow field velocity and the flow characteristic of the wake flow of the circular cylinder with the dimpled surface. This study focuses on the distribution of Reynolds stress and turbulent kinetic energy, the velocity profiles and recirculation zones, and the velocity fluctuating characteristics of flow field with POD technology. It is found that the equivalent high-intensity Reynolds stress and turbulent kinetic energy regions of the circular cylinder with the dimpled surface are smaller, and the peak values are lower, and the velocity gradient in the wake region of the circular cylinder with the dimpled surface is larger. Otherwise, the energy contained by the dominant modes of the smooth cylinder is larger than that contained by the dominant modes of the circular cylinders with the dimpled surface, which means the energy of the dimpled cylinder is more distributed. At the same time, it is observed that the dimpled structure will decrease the vortex shedding intensity, but may increase the vortex shedding frequency, and destroy the inherent flow mode of the flow field around the cylinder.

Cite

CITATION STYLE

APA

Qi, J., Shao, Y., Chen, Q., Liu, P., Chen, C., Wang, D., … Yan, F. (2021). Dynamic analysis of wake characteristics of the circular cylinder with a dimpled surface. Water (Switzerland), 13(16). https://doi.org/10.3390/w13162197

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free