Monoclonal antibodies (MAb) to lipopolysaccharide (LPS) and to the major outer membrane protein OmpA from Proteus mirabilis were generated and used to monitor the kinetics of uptake in macrophages of LPS as well as LPS bound to OmpA. Uptake was measured by a modified enzyme-linked immunosorbent assay (ELISA) in a microtiter culture system. The MAb were of various immunoglobulin G subclasses and showed strong reactivities with their antigens. Four hybridoma clones recognizing LPS and three recognizing OmpA from P. mirabilis 19 were selected for the present study on the basis of reactions in ELISA and Western blot (immunoblot) analyses. In the uptake assay, it was possible to differentiate between antigen on the cell surface and antigen which had been internalized. Uptake of LPS by macrophages was relatively rapid during the first 4 h of culture and then progressed more slowly over the remaining 24-h observation period. The level of detection of LPS in this assay system was in the nanogram range. When macrophages were pulsed with LPS for 30 min and subsequently washed to remove antigen not bound to the cells, the amount of LPS detectable on the macrophage surface decreased progressively for 3 h after the pulse, which indicated internalization of the antigen. Thereafter, LPS rose to an increased level on the cell surface. The rate of uptake of LPS was more rapid when it was in complex with OmpA. When the fate of OmpA was monitored in the same LPS- protein complexes by use of MAb to OmpA in a pulse experiment, the level of protein measured on the cell surface decreased after an initial rise, which again indicated internalization, but the protein did not reappear on the cell surface in a form detectable with the MAb. Compared with the LPS monitoring system, detection of OmpA associated with macrophages was weak, although the MAb to OmpA reacted strongly with the protein in the ELISA and Western blot analyses.
CITATION STYLE
Korn, A., Rajabi, Z., Wassum, B., Ruiner, W., & Nixdorff, K. (1995). Enhancement of uptake of lipopolysaccharide in macrophages by the major outer membrane protein OmpA of gram-negative bacteria. Infection and Immunity, 63(7), 2697–2705. https://doi.org/10.1128/iai.63.7.2697-2705.1995
Mendeley helps you to discover research relevant for your work.