Aims: Lipid metabolism might be compromised in type 1 diabetes, and the understanding of lipid physiology is critically important. This study aimed to compare the change in plasma lipid concentrations during carbohydrate dietary changes in individuals with type 1 diabetes and identify links to early-stage dyslipidaemia. We hypothesized that (1) the lipidomic profiles after ingesting low or high carbohydrate diet for 12 weeks would be different; and (2) specific annotated lipid species could have significant associations with metabolic outcomes. Methods: Ten adults with type 1 diabetes (mean ± SD: age 43.6 ± 13.8 years, diabetes duration 24.5 ± 13.4 years, BMI 24.9 ± 2.1 kg/m2, HbA1c 57.6 ± 2.6 mmol/mol) using insulin pumps participated in a randomized 2-period crossover study with a 12-week intervention period of low carbohydrate diet (< 100 g carbohydrates/day) or high carbohydrate diet (> 250 g carbohydrates/day), respectively, separated by a 12-week washout period. A large-scale non-targeted lipidomics was performed with mass spectrometry in fasting plasma samples obtained before and after each diet intervention. Longitudinal lipid levels were analysed using linear mixed-effects models. Results: In total, 289 lipid species were identified from 14 major lipid classes. Comparing the two diets, 11 lipid species belonging to sphingomyelins, phosphatidylcholines and LPC(O-16:0) were changed. All the 11 lipid species were significantly elevated during low carbohydrate diet. Two lipid species were most differentiated between diets, namely SM(d36:1) (β ± SE: 1.44 ± 0.28, FDR = 0.010) and PC(P-36:4)/PC(O-36:5) (β ± SE: 1.34 ± 0.25, FDR = 0.009) species. Polyunsaturated PC(35:4) was inversely associated with BMI and positively associated with HDL cholesterol (p
CITATION STYLE
Al-Sari, N., Schmidt, S., Suvitaival, T., Kim, M., Trošt, K., Ranjan, A. G., … Legido-Quigley, C. (2021). Changes in the lipidome in type 1 diabetes following low carbohydrate diet: Post-hoc analysis of a randomized crossover trial. Endocrinology, Diabetes and Metabolism, 4(2). https://doi.org/10.1002/edm2.213
Mendeley helps you to discover research relevant for your work.