Distinct Contributions of Climate Change and Anthropogenic Activities to Evapotranspiration and Gross Primary Production Variations over Mainland China

3Citations
Citations of this article
7Readers
Mendeley users who have this article in their library.

Abstract

In recent decades, China has experienced substantial climate change and significant vegetation greenness due to the extensive implementation of artificial ecological restoration programs. However, the quantitative contributions of climatic and anthropogenic drivers to the national variations in associated evapotranspiration (ET) and gross primary productivity (GPP) over China at different climate zoning sub-regions remain unclear. Based on the analysis of climate factor and vegetation disturbance trends created by anthropogenic activities, this study constructed a remote sensing-based ecological model consisting of Penman–Monteith–Leuning (PML) and light use efficiency (LUE) components. The proposed model simulated the spatiotemporal changes in ET and GPP between 1999 and 2018 over China. The contributions of climatic factors and anthropogenic activities to ET and GPP variations were quantitatively calculated by ridge regression. The results show that (1) both interannual ET and GPP markedly increased, by 1.32 mm yr−1 and 8.01 g C m−2 yr−1, respectively; (2) vegetation changes due to anthropogenic disturbance made the dominant contribution to GPP variations over China, while the dominant factor influencing ET changes differed by sub-region due to the joint effects of vegetation and climate; (3) temperature and precipitation positively affected ET, while wind speed, humidity, and solar radiation negatively contributed to ET in most parts of Mainland China. These findings may provide a workable, scientific reference for further ecological restoration decision-making processes in China.

Cite

CITATION STYLE

APA

Huang, Y., Yang, S., & Zhao, H. (2024). Distinct Contributions of Climate Change and Anthropogenic Activities to Evapotranspiration and Gross Primary Production Variations over Mainland China. Remote Sensing, 16(3). https://doi.org/10.3390/rs16030475

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free