Ocean conditions influence the economies and climate of West Africa. Based on the 30-year daily Optimum Interpolation Sea Surface Temperature (OISST) dataset during May–October, upwelling surface variability and marine heatwaves (MHWs) at the northern coast of the Gulf of Guinea are investigated. The cooling surface decreases more rapidly around Cape Palmas than around Cape Three Points and extends eastward. MHWs variability exhibits a frequent occurrence of such events since 2015 that is consistent with the observed oceanic warming and the decrease in upwelling surface. The empirical orthogonal functions performed on the annual cumulated intensity of MHWs show four variability modes that include the whole northern coast, an east–west dipole between the two capes, a contrast between the northern coast at the two capes and the meridional section east of 5° E, and a north–south opposition. These patterns show 3-year, 6-year, and 8-year trends, and are related to coastal upwelling at the northern coast of the Gulf of Guinea. Similarly, surface ocean and atmospheric conditions are modified according to MHW periods. These changes take place before, during, and after MHW events. These results could be used to understand how this change influences the marine ecosystem, the local fisheries resources, and the extreme rainfall episodes in West Africa.
CITATION STYLE
Koné, M., Djakouré, S., Adon, M., Ta, S., & Kouadio, Y. (2022). Marine Heatwaves, Upwelling, and Atmospheric Conditions during the Monsoon Period at the Northern Coast of the Gulf of Guinea. Climate, 10(12). https://doi.org/10.3390/cli10120199
Mendeley helps you to discover research relevant for your work.