Disrupting prefrontal cortex prevents performance gains from sensory-motor training

46Citations
Citations of this article
130Readers
Mendeley users who have this article in their library.

Abstract

Humans show large and reliable performance impairments when required to make more than one simple decision simultaneously. Such multitasking costs are thought to largely reflect capacity limits in response selection (Welford, 1952; Pashler, 1984, 1994), the information processing stage at which sensory input is mapped to a motor response. Neuroimaging has implicated the left posterior lateral prefrontal cortex (pLPFC) as a key neural substrate of response selection (Dux et al., 2006, 2009; Ivanoff et al., 2009). For example, activity in left pLPFC tracks improvements in response selection efficiency typically observed following training (Dux et al., 2009). To date, however, there has been no causal evidence that pLPFC contributes directly to sensory-motor training effects, or the operations through which training occurs. Moreover, the left hemisphere lateralization of this operation remains controversial (Jiang and Kanwisher, 2003; Sigman and Dehaene, 2008; Verbruggen et al., 2010). We used anodal (excitatory), cathodal (inhibitory), and sham transcranial direct current stimulation (tDCS) to left and right pLPFC and measured participants' performance on high and low response selection load tasks after different amounts of training. Both anodal and cathodal stimulation of the left pLPFC disrupted training effects for the high load condition relative to sham. No disruption was found for the low load and right pLPFC stimulation conditions. The findings implicate the left pLPFC in both response selection and training effects. They also suggest that training improves response selection efficiency by fine-tuning activity in pLPFC relating to sensory-motor translations. ©2013 the authors.

Cite

CITATION STYLE

APA

Filmer, H. L., Mattingley, J. B., Marois, R., & Dux, P. E. (2013). Disrupting prefrontal cortex prevents performance gains from sensory-motor training. Journal of Neuroscience, 33(47), 18654–18660. https://doi.org/10.1523/JNEUROSCI.2019-13.2013

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free