Background: Severe COVID-19 pneumonia requiring intensive care treatment remains a clinical challenge to date. Dexamethasone was reported as a promising treatment option, leading to a reduction of mortality rates in severe COVID-19 disease. However, the effect of dexamethasone treatment on cardiac injury and pulmonary embolism remains largely elusive. Methods: In total 178 critically ill COVID-19 patients requiring intensive care treatment and mechanical ventilation were recruited in three European medical centres and included in the present retrospective study. One hundred thirteen patients (63.5%) were treated with dexamethasone for a median duration of 10 days (IQR 9–10). Sixty five patients (36.5%) constituted the non-dexamethasone control group. Results: While peak inflammatory markers were reduced by dexamethasone treatment, the therapy also led to a significant reduction in peak troponin levels (231 vs. 700% indicated as relative to cut off value, p = 0.001). Similar, dexamethasone resulted in significantly decreased peak D-Dimer levels (2.16 mg/l vs. 6.14 mg/l, p = 0.002) reflected by a significant reduction in pulmonary embolism rate (4.4 vs. 20.0%, p = 0.001). The antithrombotic effect of dexamethasone treatment was also evident in the presence of therapeutic anticoagulation (pulmonary embolism rate: 6 vs. 34.4%, p < 0.001). Of note, no significant changes in baseline characteristics were observed between the dexamethasone and non-dexamethasone group. Conclusion: In severe COVID-19, anti-inflammatory effects of dexamethasone treatment seem to be associated with a significant reduction in myocardial injury. Similar, a significant decrease in pulmonary embolism, independent of anticoagulation, was evident, emphasizing the beneficial effect of dexamethasone treatment in severe COVID-19.
CITATION STYLE
Jirak, P., van Almsick, V., Dimitroulis, D., Mirna, M., Seelmaier, C., Shomanova, Z., … Motloch, L. J. (2022). Dexamethasone Improves Cardiovascular Outcomes in Critically Ill COVID-19, a Real World Scenario Multicenter Analysis. Frontiers in Medicine, 9. https://doi.org/10.3389/fmed.2022.808221
Mendeley helps you to discover research relevant for your work.