Background. Regulatory T cells (Tregs) suppress T-cell immune activation and human immunodeficiency virus type 1 (HIV-1) replication, but the role of Tregs in HIV-1 reservoir persistence is poorly defined. Methods. Tregs were depleted by denileukin diftitox in humanized mice with chronic HIV-1 infection. Viral replication in lineage cells was determined by p24 expression. Levels of HIV-1 RNA and DNA in human cells, as well as replication-competent-virus- producing cells, were measured to quantified viral replication and reservoirs. Results. Treg depletion resulted in a blip of HIV-1 replication in T cells but not in myeloid cells. The major activated reservoir cells were memory CD4+ T cells in vivo. Interestingly, the transient activation of viral replication led to HIV-1 reservoir reduction after viremia resuppression, as indicated by the quantity of HIV-1 DNA and replication-competent-virus-producing cells. Furthermore, we demonstrated that Tregs use cyclic adenosine monophosphate (cAMP)-dependent protein kinase A pathway to inhibit HIV-1 activation and replication in resting conventional T cells in vitro. Conclusion. Tregs suppress HIV-1 replication in T cells and contribute to HIV-1 reservoir persistence. cAMP produced in Tregs is involved in their suppression of viral gene activation and expression. Treg depletion combined with combination antiretroviral therapy provides a novel strategy for HIV-1 cure.
Mendeley helps you to discover research relevant for your work.
CITATION STYLE
Li, G., Nunoya, J. I., Cheng, L., Reszka-Blanco, N., Tsao, L. C., Jeffrey, J., & Su, L. (2017). Regulatory T Cells Contribute to HIV-1 Reservoir Persistence in CD4 + T Cells Through Cyclic Adenosine Monophosphate-Dependent Mechanisms in Humanized Mice in Vivo. Journal of Infectious Diseases, 216(12), 1579–1591. https://doi.org/10.1093/infdis/jix547