The proinflammatory cytokines IL-1β and IL-18 are inactive until cleaved by the enzyme caspase-1. Stimulation of the P2X7 receptor (P2X7R), an ATP-gated ion channel, triggers rapid activation of caspase-1. In this study we demonstrate that pretreatment of primary and Bac1 murine macrophages with TLR agonists is required for caspase-1 activation by P2X7R but it is not required for activation of the receptor itself. Caspase-1 activation by nigericin, a K+/H+ ionophore, similarly requires LPS priming. This priming by LPS is dependent on protein synthesis, given that cyclohexamide blocks the ability of LPS to prime macrophages for activation of caspase-1 by the P2X7R. This protein synthesis is likely mediated by NF-κB, as pretreatment of cells with the proteasome inhibitor MG132, or the IκB kinase inhibitor Bay 11-7085 before LPS stimulation blocks the ability of LPS to potentiate the activation of caspase-1 by the P2X7R. Thus, caspase-1 regulation in macrophages requires inflammatory stimuli that signal through the TLRs to up-regulate gene products required for activation of the caspase-1 processing machinery in response to K+-releasing stimuli such as ATP.
CITATION STYLE
Kahlenberg, J. M., Lundberg, K. C., Kertesy, S. B., Qu, Y., & Dubyak, G. R. (2005). Potentiation of Caspase-1 Activation by the P2X7 Receptor Is Dependent on TLR Signals and Requires NF-κB-Driven Protein Synthesis. The Journal of Immunology, 175(11), 7611–7622. https://doi.org/10.4049/jimmunol.175.11.7611
Mendeley helps you to discover research relevant for your work.