Sustained progress in the development of optical fibers has led to the present state where further improvements in performance are limited by intrinsic optical nonlinearities. In order to circumvent such limitations, the user community has adopted two general approaches: (i) engineer the enabled systems accordingly; and/or (ii) microstructure the fiber to shift nonlinear thresholds to high optical power levels. In both cases, the nonlinearities are accepted as they are and performance is enhanced through added system or fiber design complexity. This paper, the first in a trilogy, along with two companion articles (in 3 parts) (Int J Appl Glass Sci. 2018;9:278-287; Int J Appl Glass Sci. 2018 (in press); Int J Appl Glass Sci. 2018 (in press)), treats a third option, which is to mitigate optical nonlinearities at their fundamental origin: the materials with which the light interacts. As will be shown, such a materials approach permits greater reductions to nonlinearities including, in some cases, their complete elimination, than do the two present methods. Simpler fiber geometries and ease of manufacturing are additional benefits of this unified materials approach.
CITATION STYLE
Ballato, J., Cavillon, M., & Dragic, P. (2018). A unified materials approach to mitigating optical nonlinearities in optical fiber. I. Thermodynamics of optical scattering. International Journal of Applied Glass Science, 9(2), 263–277. https://doi.org/10.1111/ijag.12327
Mendeley helps you to discover research relevant for your work.