N-Methyl-D-aspartate receptors (NMDARs) mediate interneuronal communication and are broadly involved in nervous system physiology and pathology (Dingledine et al., 1999). Memantine, a drug that blocks the ion channel formed by NMDARs, is a widely prescribed treatment of Alzheimer's disease (Schmitt, 2005; Lipton, 2006; Parsons et al., 2007). Research on memantine's mechanism of action has focused on the NMDAR subtypes most highly expressed in adult cerebral cortex, NR1/2A and NR1/2B receptors (Cull-Candy and Leszkiewicz, 2004), and has largely ignored interactions with extracellular Mg 2+ (Mg o2+). Mg o2+ is an endogenous NMDAR channel blocker that binds near memantine's binding site (Kashiwagi et al., 2002; Chen and Lipton, 2005). We report that a physiological concentration (1 mM) of Mg o2+ decreased memantine inhibition of NR1/2A and NR1/2B receptors nearly 20-fold at a membrane voltage near rest. In contrast, memantine inhibition of the other principal NMDAR subtypes, NR1/2C and NR1/2D receptors, was decreased only ∼3-fold. As a result, therapeutic memantine concentrations should have negligible effects on NR1/2A or NR1/2B receptor activity but pronounced effects on NR1/2C and NR1/2D receptors. Quantitative modeling showed that the voltage dependence of memantine inhibition also is altered by 1 mM Mg o2+. We report similar results with the NMDAR channel blocker ketamine, a drug used to model schizophrenia (Krystal et al., 2003). These results suggest that currently hypothesized mechanisms of memantine and ketamine action should be reconsidered and that NR1/2C and/or NR1/2D receptors play a more important role in cortical physiology and pathology than previously appreciated. Copyright © 2009 Society for Neuroscience.
CITATION STYLE
Kotermanski, S. E., & Johnson, J. W. (2009). Mg 2+ imparts NMDA receptor subtype selectivity to the Alzheimer’s drug memantine. Journal of Neuroscience, 29(9), 2774–2779. https://doi.org/10.1523/JNEUROSCI.3703-08.2009
Mendeley helps you to discover research relevant for your work.