The Effect of General Relativistic Precession on Tidal Disruption Events from Eccentric Nuclear Disks

  • Wernke H
  • Madigan A
12Citations
Citations of this article
17Readers
Mendeley users who have this article in their library.

Abstract

An eccentric nuclear disk consists of stars moving on apsidally aligned orbits around a central black hole. The secular gravitational torques that dynamically stabilize these disks can also produce tidal disruption events (TDEs) at very high rates in Newtonian gravity. General relativity, however, is known to quench secular torques via rapid apsidal precession. Here we show that for a disk-to-black-hole mass ratio of , the system is in the full loss-cone regime. The magnitude of the torque per orbital period acting on a stellar orbit means that general relativistic precession does not have a major effect on the dynamics. Thus we find no evidence that TDE rates from eccentric nuclear disks in the full loss-cone regime are affected by general relativistic precession. Furthermore, we show that orbital elements between successive TDEs from eccentric nuclear disks are correlated, potentially resulting in unique observational signatures.

Cite

CITATION STYLE

APA

Wernke, H. N., & Madigan, A.-M. (2019). The Effect of General Relativistic Precession on Tidal Disruption Events from Eccentric Nuclear Disks. The Astrophysical Journal, 880(1), 42. https://doi.org/10.3847/1538-4357/ab2711

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free