Background: The upper torso is recommended as an attachment site for the Fitbit One®, one of the most common wireless physical activity trackers in the consumer market, and could represent a viable alternative to wrist- and hip-attachment sites. The objective of this study was to provide evidence concerning the validity of the Fitbit One® attached to the upper torso for measuring step counts and energy expenditure among female adults. Results: Thirteen female adults completed a four-phase treadmill exercise protocol (1.9, 3.0, 4.0, and 5.2 mph). Participants were fitted with three Fitbit® trackers (two Fitbit One® trackers: one on the upper torso, one on the hip; and a wrist-based Fitbit Flex®). Steps were assessed by manual counting of a video recording. Energy expenditure was measured by gas exchange indirect calorimetry. Concordance correlation coefficients of Fitbit-estimated step counts to observed step counts for the upper torso-attached Fitbit One®, hip-attached Fitbit One® and wrist-attached Fitbit Flex® were 0.98 (95 % CI 0.97-0.99), 0.99 (95 % CI 0.99-0.99), and 0.75 (95 % CI 0.70-0.79), respectively. The percent error for step count estimates from the upper torso attachment site was ≤3 % for all walking and running speeds. Upper torso step count estimates showed similar accuracy relative to hip attachment of the Fitbit One® and were more accurate than the wrist-based Fitbit Flex®. Similar results were obtained for energy expenditure estimates. Energy expenditure estimates for the upper torso attachment site yielded relative percent errors that ranged from 9 to 19 % and were more accurate than the wrist-based Fitbit Flex®, but less accurate than hip attachment of the Fitbit One®. Conclusions: Our study shows that physical activity measures obtained from the upper torso attachment site of the Fitbit One® are accurate across different walking and running speeds in female adults. The upper torso attachment site of the Fitbit One® outperformed the wrist-based Fitbit Flex® and yielded similar step count estimates to hip-attachment. These data support the upper torso as an alternative attachment site for the Fitbit One®.
CITATION STYLE
Diaz, K. M., Krupka, D. J., Chang, M. J., Shaffer, J. A., Ma, Y., Goldsmith, J., … Davidson, K. W. (2016). Validation of the Fitbit One® for physical activity measurement at an upper torso attachment site. BMC Research Notes, 9(1). https://doi.org/10.1186/s13104-016-2020-8
Mendeley helps you to discover research relevant for your work.