Aerosol formation during processing of potentially infectious samples on Roche immunochemistry analyzers (cobas e analyzers) and in an end-to-end laboratory workflow to model SARS-CoV-2 infection risk for laboratory operators

0Citations
Citations of this article
4Readers
Mendeley users who have this article in their library.
Get full text

Abstract

Objectives: To assess aerosol formation during processing of model samples in a simulated real-world laboratory setting, then apply these findings to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) to assess the risk of infection to laboratory operators. Design: This study assessed aerosol formation when using cobas e analyzers only and in an end-to-end laboratory workflow. Recombinant hepatitis B surface antigen (HBsAg) was used as a surrogate marker for infectious SARS-CoV-2 viral particles. Using the HBsAg model, air sampling was performed at different positions around the cobas e analyzers and in four scenarios reflecting critical handling and/or transport locations in an end-to-end laboratory workflow. Aerosol formation of HBsAg was quantified using the Elecsys® HBsAg II quant II immunoassay. The model was then applied to SARS-CoV-2. Results: Following application to SARS-CoV-2, mean HBsAg uptake/hour was 1.9 viral particles across the cobas e analyzers and 0.87 viral particles across all tested scenarios in an end-to-end laboratory workflow, corresponding to a maximum inhalation rate of <16 viral particles during an 8-hour shift. Conclusion: Low production of marker-containing aerosol when using cobas e analyzers and in an end-to-end laboratory workflow is consistent with a remote risk of laboratory-acquired SARS-CoV-2 infection for laboratory operators.

Cite

CITATION STYLE

APA

Burghardt, G. V., Eckl, M., Huether, D., Larbolette, O. H. D., Lo Faso, A., Ofenloch-Haehnle, B. R., … Herb, R. A. (2022). Aerosol formation during processing of potentially infectious samples on Roche immunochemistry analyzers (cobas e analyzers) and in an end-to-end laboratory workflow to model SARS-CoV-2 infection risk for laboratory operators. Frontiers in Public Health, 10. https://doi.org/10.3389/fpubh.2022.1034289

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free