In the field of quantum magnetism, the exactly solvable Kitaev honeycomb model serves as a paradigm for the fractionalization of spin degrees of freedom and the formation of Z 2 quantum spin liquids. An intense experimental search has led to the discovery of a number of spin-orbit entangled Mott insulators that realize its characteristic bond-directional interactions and, in the presence of magnetic fields, exhibit no indications of long-range order. Here, we map out the complete phase diagram of the Kitaev model in tilted magnetic fields and report the emergence of a distinct gapless quantum spin liquid at intermediate field strengths. Analyzing a number of static, dynamical, and finite temperature quantities using numerical exact diagonalization techniques, we find strong evidence that this phase exhibits gapless fermions coupled to a massless U(1) gauge field. We discuss its stability in the presence of perturbations that naturally arise in spin-orbit entangled candidate materials.
CITATION STYLE
Hickey, C., & Trebst, S. (2019). Emergence of a field-driven U(1) spin liquid in the Kitaev honeycomb model. Nature Communications, 10(1). https://doi.org/10.1038/s41467-019-08459-9
Mendeley helps you to discover research relevant for your work.