Mutant analyses in different eudicotyledonous flowering plants demonstrated that SEPALLATA-Wke MADSbox genes are required for the specification of sepals, petals, stamens and carpels, and for floral determinacy, thus defining class E floral organ identity genes. SEP-like genes encode MADS-domain transcription factors and constitute an angiosperm-specific gene clade whose members show remarkably different degrees of redundancy and sub-functionalization within eudicots. To better understand the evolutionary dynamics of SEP-like genes throughout the angiosperms we have knocked down SEP-like genes of rice (Oryza sativa), a distant relative of eudicots within the flowering plants. Plants affected in both OsMADS7and OsMADS8 show severe phenotypes including late flowering, homeotic changes of lodicules, stamens and carpels into palea/ lemma-like organs, and a loss of floral determinacy. Simultaneous knockdown of the four rice SEP-like genes OsMADS1, OsMADS5, OsMADS7 and OsMADS8, leads to homeotic transformation of all floral organs except the lemma into leaf-like organs. This mimics the phenotype observed with the sep1 sep2 sep3 sep4 quadruple mutant of Arabidopsis. Detailed analyses of the spatial and temporal m RNA expression and protein interaction patterns corresponding to the different rice SEP-like genes show strong similarities, but also gene-specific differences. These findings reveal conservation of SEP-like genes in specifying floral determinacy and organ identities since the separation of eudicots and monocots about 150 million years ago. However, they indicate also monocot-specific neo- and sub-functionalization events and hence underscore the evolutionary dynamics of SEP-like genes. Moreover, our findings corroborate the view that the lodicules of grasses are homologous to eudicot petals. © 2010 Blackwell Publishing Ltd.
CITATION STYLE
Cui, R., Han, J., Zhao, S., Su, K., Wu, F., Du, X., … Meng, Z. (2010). Functional conservation and diversification of class e floral homeotic genes in rice (Oryza sativa). Plant Journal, 61(5), 767–781. https://doi.org/10.1111/j.1365-313X.2009.04101.x
Mendeley helps you to discover research relevant for your work.