As árvores de decisão são modelos hierárquicos utilizados em várias áreas do conhecimento por sua capacidade preditiva e de resolução de problemas de maneira simples e objetiva. Entretanto, apresentam algumas limitações relacionadas à sua adequação à base de dados e ao se atentar quanto aos procedimentos para seleção dos parâmetros de crescimento e poda a serem adotados. Desta forma, têm-se como objetivo avaliar e discutir a performance do algoritmo J48 para construção de modelos de tomada de decisão em árvore em base de dados com atributos de diferentes tipos. Para tanto, realizaram-se experimentos em 10 bases de dados disponíveis em repositório internacional, considerando como variantes os métodos de treinamento, teste e poda, aplicados em toda base de dados e com o uso dos métodos Wrapper e CFS (Correlation-based Feature Selection) para seleção de atributos. Identificou-se que na presença de dados contínuos, os únicos modelos que apresentaram boa capacidade preditiva estiveram presentes em situações em que a grande quantidade de exemplos puderam compensar tal deficiência. Os modos de treinamento "validação cruzada" e "divisão por porcentagem" mostraram-se similares em suas predições quando ajustados a 10 folds e 75%, respectivamente. Ademais, a seleção de atributos não foi capaz de gerar melhores predições denotando que tal método de forma isolada não compensa possíveis inadequações nas bases de dados. Pode-se constatar que os resultados referentes à capacidade preditiva dos modelos são fortemente direcionados pelo quantitativo de exemplos pertencentes à base, presença de dados contínuos e de dados com ruído.
CITATION STYLE
Araujo Vieira, E. M. de, Neves, N. T. de A. T., De Oliveira, A. C. C., De Moraes, R. M., & Do Nascimento, J. A. (2018). Avaliação da performance do algoritmo J48 para construção de modelos baseados em árvores de decisão. Revista Brasileira de Computação Aplicada, 10(2), 80–90. https://doi.org/10.5335/rbca.v10i2.8078
Mendeley helps you to discover research relevant for your work.