Herein, Generative Topographic Mapping (GTM) was challenged to produce planar projections of the high-dimensional conformational space of complex molecules (the 1LE1 peptide). GTM is a probability-based mapping strategy, and its capacity to support property prediction models serves to objectively assess map quality (in terms of regression statistics). The properties to predict were total, non-bonded and contact energies, surface area and fingerprint darkness. Map building and selection was controlled by a previously introduced evolutionary strategy allowed to choose the best-suited conformational descriptors, options including classical terms and novel atom-centric autocorrellograms. The latter condensate interatomic distance patterns into descriptors of rather low dimensionality, yet precise enough to differentiate between close favorable contacts and atom clashes. A subset of 20 K conformers of the 1LE1 peptide, randomly selected from a pool of 2 M geometries (generated by the S4MPLE tool) was employed for map building and cross-validation of property regression models. The GTM build-up challenge reached robust three-fold cross-validated determination coefficients of Q2=0.7…0.8, for all modeled properties. Mapping of the full 2 M conformer set produced intuitive and information-rich property landscapes. Functional and folding subspaces appear as well-separated zones, even though RMSD with respect to the PDB structure was never used as a selection criterion of the maps.
CITATION STYLE
Horvath, D., Baskin, I., Marcou, G., & Varnek, A. (2017). Generative Topographic Mapping of Conformational Space. Molecular Informatics, 36(10). https://doi.org/10.1002/minf.201700036
Mendeley helps you to discover research relevant for your work.