Assessing and predicting protein interactions by combining manifold embedding with multiple information integration

52Citations
Citations of this article
25Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Background: Protein-protein interactions (PPIs) play crucial roles in virtually every aspect of cellular function within an organism. Over the last decade, the development of novel high-throughput techniques has resulted in enormous amounts of data and provided valuable resources for studying protein interactions. However, these high-throughput protein interaction data are often associated with high false positive and false negative rates. It is therefore highly desirable to develop scalable methods to identify these errors from the computational perspective.Results: We have developed a robust computational technique for assessing the reliability of interactions and predicting new interactions by combining manifold embedding with multiple information integration. Validation of the proposed method was performed with extensive experiments on densely-connected and sparse PPI networks of yeast respectively. Results demonstrate that the interactions ranked top by our method have high functional homogeneity and localization coherence.Conclusions: Our proposed method achieves better performances than the existing methods no matter assessing or predicting protein interactions. Furthermore, our method is general enough to work over a variety of PPI networks irrespectively of densely-connected or sparse PPI network. Therefore, the proposed algorithm is a much more promising method to detect both false positive and false negative interactions in PPI networks. © 2012 Lei et al.; licensee BioMed Central Ltd.

Cite

CITATION STYLE

APA

Lei, Y. K., You, Z. H., Ji, Z., Zhu, L., & Huang, D. S. (2012). Assessing and predicting protein interactions by combining manifold embedding with multiple information integration. BMC Bioinformatics, 13(SUPPL.7). https://doi.org/10.1186/1471-2105-13-S7-S3

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free