Trypanosomatid parasites are causative agents of important human and animal diseases such as sleeping sickness and leishmaniasis. Most trypanosomatids are transmitted to their mammalian hosts by insects, often belonging to Diptera (or true flies). With resistance to both vector-targeted pesticides and trypanocidal drugs being reported, there is a need for novel transmission blocking strategies to be developed. Studies using the blood-feeding vectors themselves are not broadly accessible, as such, new model systems are being developed to unpick insect-trypanosmatids interactions. One such case is the interactions between the model dipteran Drosophila melanogaster and its natural trypanosomatid Herpetomonas muscarum. Our previous work has found that much of the transcriptomic changes triggered in H. muscarum after ingestion by Drosophila reflect what is known for disease-causing trypanosomatids. Here we describe a set of tools to genetically manipulate the parasite and therefore create a truly tractable insect-parasite interaction system from both sides of this association. These include transgenic fluorescently tagged parasites to follow infection dynamics in the fly gut as well as iterations of plasmids that can be used for generating knock-in and knock-out strains. The tools presented in this short report will facilitate further characterization of trypanosomatid establishment in a model dipteran.
CITATION STYLE
Sloan, M. A., & Ligoxygakis, P. (2020). Tools for the genetic manipulation of Herpetomonas muscarum. G3: Genes, Genomes, Genetics, 10(5), 1613–1616. https://doi.org/10.1534/g3.120.401048
Mendeley helps you to discover research relevant for your work.