Mount Ontake erupted at 11:52 am on September 27, 2014, which generated pyroclastic density currents, ballistic projectiles, ash falls, and a small-scale lahar that spouted directly from craters formed by the eruption. Because this lahar may have been generated by water released from within these craters, we refer to this lahar as a "syneruptive-spouted type lahar" in this study. The lahar of the 2014 eruption was small relative to the other syneruptive type lahars reported in the past that were snowmelt type or crater lake breakout type lahars. Nevertheless, in the 2014 event, the syneruptive-spouted type lahar extended approximately 5 km downstream from the Jigokudani crater via the Akagawa River, with an estimated total volume of ~1.2 × 105 m3. We have reviewed other representative syneruptive-spouted type lahars that have been reported in Japan. The syneruptive-spouted type lahar attributed to the September 2014 eruption had the longest runout distance and largest volume of all cases studied. The mineral assemblage identified from samples of the lahar deposits is similar to that of ash-fall deposits from the same eruption. Previous workers deduced that the ash was derived mainly from shallow depths (within 2 km of the surface). The syneruptive-spouted type lahar deposits are therefore also considered to have originated from shallow depths. A syneruptive-spouted type lahar is a small-scale phenomenon that causes little direct damage to infrastructure, but has long-term influence on water quality. Increases in turbidity and decreases in pH are expected to occur in the Mount Ontake area downstream of Nigorisawa after heavy rainfall events in the future. Therefore, the potential indirect (but long term) damage of syneruptive-spouted type lahars should be considered for hazard mapping and planning volcanic disaster prevention measures.
CITATION STYLE
Sasaki, H., Chiba, T., Kishimoto, H., & Naruke, S. (2016). Characteristics of the syneruptive-spouted type lahar generated by the September 2014 eruption of Mount Ontake, Japan the Phreatic Eruption of Mt. Ontake Volcano in 2014 5. Volcanology. Earth, Planets and Space, 68(1). https://doi.org/10.1186/s40623-016-0516-z
Mendeley helps you to discover research relevant for your work.