Neuroblastoma (NB) is the most common extracranial solid tumor in childhood. Our previous studies have shown that hypoxia-inducible factor 2 alpha (HIF-2α), one member of the bHLH-PAS transcription factor family, facilitates the progression of NB under non-hypoxic conditions. However, the mechanisms underlying HIF- 2α expression in NB still remain largely unknown. Herein, through analyzing the computational algorithm programs, we identified microRNA-558 (miR-558) as a crucial regulator of HIF-2α expression in NB. We demonstrated that miR-558 promoted the expression of HIF-2α at translational levels in NB cells through recruiting Argonaute 2 (AGO2). Mechanistically, miR-558 directly bound with its complementary site within 5'-untranslated region (5'-UTR) to facilitate the binding of AGO2 to eukaryotic translation initiation factor 4E (eIF4E) binding protein 1, resulting in increased eIF4E enrichment and HIF-2α translation. In addition, miR-558 promoted the growth, invasion, metastasis, and angiogenesis of NB cells in vitro and in vivo, and these biological features were rescued by knockdown of AGO2, eIF4E, or HIF-2α. In clinical NB specimens, miR-558, AGO2, and eIF4E were highly expressed and positively correlated with HIF-2α expression. Patients with high miR-558, HIF-2α, AGO2, or eIF4E levels had lower survival probability. Taken together, these results demonstrate that miR-558 facilitates the expression of HIF-2α through bindingto its 5'-UTR, thus promoting the tumorigenesis and aggressiveness of NB.
CITATION STYLE
Qu, H., Zheng, L., Song, H., Jiao, W., Li, D., Fang, E., … Tong, Q. (2016). microRNA-558 facilitates the expression of hypoxia-inducible factor 2 alpha through binding to 5’-untranslated region in neuroblastoma. Oncotarget, 7(26), 40657–40673. https://doi.org/10.18632/oncotarget.9813
Mendeley helps you to discover research relevant for your work.