Silica/Polypyrrole nanocomposites (SiO2/PPy) incorporating oxalate as counter anion (SiO2/PPyOx) were chemically polymerized in the solution with the presence of pyrrole, silica, and sodium oxalate. Nanocomposites SiO2/PPyOx at different concentrations of oxalate anion were characterized with FTIR, XRD, EDX, TGA, and TEM. The corrosion protective properties for carbon steel of nanocomposites in epoxy coating were studied by electrochemical techniques including electrochemical impedance spectroscopy (EIS) and open circuit potential (OCP). FTIR results of nanocomposites show a slightly red-shift in terms of wavelength compared with the case of PPy and SiO2 spectra. It may be due to a better conjugation and interactions between PPy and SiO2 in nanocomposite structure. TEM image indicated that nanocomposites have spherical morphologies with diameters between 100 and 150 nm. The EIS results showed that Z modulus values of epoxy coatings containing SiO2/PPyOx composites reached about 109.7 Ω.cm2, always higher than that of epoxy coating. These results are also confirmed by OCP results. It proves that the presence of oxalate anion can enhance the resistance against corrosion and it has been shown that the content of counter anion strongly affects the anticorrosion ability.
CITATION STYLE
Vu, V. T. H., Dinh, T. T. M., Pham, N. T., Nguyen, T. T., Nguyen, P. T., & To, H. T. X. (2018). Evaluation of the Corrosion Inhibiting Capacity of Silica/Polypyrrole-Oxalate Nanocomposite in Epoxy Coatings. International Journal of Corrosion, 2018. https://doi.org/10.1155/2018/6395803
Mendeley helps you to discover research relevant for your work.