Combining structural connectivity and response latencies to model the structure of the visual system

16Citations
Citations of this article
68Readers
Mendeley users who have this article in their library.

Abstract

Several approaches exist to ascertain the connectivity of the brain, and these approaches lead to markedly different topologies, often incompatible with each other. Specifically, recent single-cell recording results seem incompatible with current structural connectivity models. We present a novel method that combines anatomical and temporal constraints to generate biologically plausible connectivity patterns of the visual system of the macaque monkey. Our method takes structural connectivity data from the CoCoMac database and recent single-cell recording data as input and employs an optimization technique to arrive at a new connectivity pattern of the visual system that is in agreement with both types of experimental data. The new connectivity pattern yields a revised model that has fewer levels than current models. In addition, it introduces subcortical-cortical connections. We show that these connections are essential for explaining latency data, are consistent with our current knowledge of the structural connectivity of the visual system, and might explain recent functional imaging results in humans. Furthermore we show that the revised model is not underconstrained like previous models and can be extended to include newer data and other kinds of data. We conclude that the revised model of the connectivity of the visual system reflects current knowledge on the structure and function of the visual system and addresses some of the limitations of previous models. © 2008 Capalbo et al.

Cite

CITATION STYLE

APA

Capalbo, M., Postma, E., & Goebel, R. (2008). Combining structural connectivity and response latencies to model the structure of the visual system. PLoS Computational Biology, 4(8). https://doi.org/10.1371/journal.pcbi.1000159

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free