DNA topoisomerases, enzymes that alter the superhelicity of DNA, have been implicated in such critical cellular functions as transcription, DNA replication, and recombination. In the yeast Saccharomyces cerevisiae, a null mutation in the gene encoding topoisomerase I (TOP1) causes elevated levels of mitotic recombination in the ribosomal DNA (rDNA) but has little effect on growth. We have isolated a missense mutation in TOP1 that causes mitotic hyper-recombination not only in the rDNA, but also at other loci, in addition to causing a number of other unexpected phenotypes. This topoisomerase I mutation (top1-103) causes slow growth, constitutive expression of DNA damage-inducible genes, and inviability in the absence of the double-strand break repair system. Overexpression of top1-103 causes RAD9-dependent cell cycle arrest in G2. We show that the Top1-103 enzyme nicks DNA in vitro, suggesting that it damages DNA directly. We propose that Top1-103 mimics the action of wild-type topoisomerase I in the presence of the anti-tumor drug, camptothecin.
CITATION STYLE
Levin, N. A., Bjornsti, M. A., & Fink, G. R. (1993). A novel mutation in DNA topoisomerase I of yeast causes DNA damage and RAD9-dependent cell cycle arrest. Genetics, 133(4), 799–814. https://doi.org/10.1093/genetics/133.4.799
Mendeley helps you to discover research relevant for your work.