Simultaneously harvesting, converting and storing solar energy in a single device represents an ideal technological approach for the next generation of power sources. Herein, we propose a device consisting of an integrated carbon-based perovskite solar cell module capable of harvesting solar energy (and converting it into electricity) and a rechargeable aqueous zinc metal cell. The electrochemical energy storage cell utilizes heterostructural Co2P-CoP-NiCoO2 nanometric arrays and zinc metal as the cathode and anode, respectively, and shows a capacity retention of approximately 78% after 25000 cycles at 32 A/g. In particular, the battery cathode and perovskite material of the solar cell are combined in a sandwich joint electrode unit. As a result, the device delivers a specific power of 54 kW/kg and specific energy of 366 Wh/kg at 32 A/g and 2 A/g, respectively. Moreover, benefiting from its narrow voltage range (1.40–1.90 V), the device demonstrates an efficiency of approximately 6%, which is stable for 200 photocharge and discharge cycles.
Mendeley helps you to discover research relevant for your work.
CITATION STYLE
Chen, P., Li, T. T., Yang, Y. B., Li, G. R., & Gao, X. P. (2022). Coupling aqueous zinc batteries and perovskite solar cells for simultaneous energy harvest, conversion and storage. Nature Communications, 13(1). https://doi.org/10.1038/s41467-021-27791-7