Soil bio-cementation using a new one-phase low-pH injection method

173Citations
Citations of this article
132Readers
Mendeley users who have this article in their library.
Get full text

Abstract

Soil bio-cementation via microbially induced carbonate precipitation (MICP) has been extensively studied as a promising alternative technique to traditional chemical cementing agents for ground improvement. The multiple-phase injection methods are currently well adopted for MICP treatment, but it is rather complex and requires excessive number of injections. This paper presents a novel one-phase injection method using low-pH all-in-one biocement solution (i.e. a mixture of bacterial culture, urea, and CaCl2). The key feature of this method is that the lag period of the bio-cementation process can be controlled by adjusting the biomass concentration, urease activity, and pH. This process prevents the clogging of bio-flocs formation and thus allows the biocement solution to be well distributed inside the soil matrix before bio-cementation takes effect, allowing a relatively uniform MICP treatment to be achieved. Furthermore, the ammonia gas release would be reduced by more than 90%, which represents a significant improvement in the environmental friendliness of the technology. The new one-phase method is also effective in terms of the mechanical property of MICP-treated soil; an unconfined compressive strength of 2.5 MPa was achieved for sand after six treatments.

Cite

CITATION STYLE

APA

Cheng, L., Shahin, M. A., & Chu, J. (2019). Soil bio-cementation using a new one-phase low-pH injection method. Acta Geotechnica, 14(3), 615–626. https://doi.org/10.1007/s11440-018-0738-2

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free