Structure- Toxicity relationships for a series of 75 azo and azo- Anilide dyes and five diazonium salts were developed using Hydractinia echinata (H. echinata) as model species. In addition, based on these relationships, predictions for 58 other azo-dyes were made. The experimental results showed that the measured effectiveness Mlog(1/MRC50) does not depend on the number of azo groups or the ones corresponding to metobolites, but it is influenced by the number of anilide groups, as well as by the substituents' positions within molecules. The conformational analysis pointed out the intramolecular hydrogen bonds, especially the simple tautomerization of quinoidic (STOH) or aminoidic (STNH2) type. The effectiveness is strongly influenced by the "push-pull" electronic effect, specific to two hydroxy or amino groups separated by an azo moiety (double alternate tautomery, (DAT), to the -COOH or -SO3H groups which are located in ortho or para position with respect to the azo group. The levels of the lipophylic/hydrophilic, electronic and steric equilibriums, pointed out by the Mlog(1/MRC50) values, enabled the calculation of their average values Clog(1/MRC50) ("Köln model"), characteristic to one derivative class (class isotoxicity). The azo group reduction and the hydrolysis of the amido/peptidic group are two concurrent enzymatic reactions, which occur with different reaction rates and mechanisms. The products of the partial biodegradation are aromatic amines. No additive or synergic effects are noticed among them.
CITATION STYLE
Chicu, S. A., Munteanu, M., Cîtu, I., Soica, C., Dehelean, C., Trandafirescu, C., … Simu, G. M. (2014). The hydractinia echinata test-system. III: Structure- Toxicity relationship study of some azo-, azo- Anilide, and diazonium salt derivatives. Molecules, 19(7), 9798–9817. https://doi.org/10.3390/molecules19079798
Mendeley helps you to discover research relevant for your work.