The Atlung Method for Intercalant Diffusion and Resistance (AMIDR) is a novel, high accuracy method for measuring solid state diffusivity and interface resistance related to the Atlung Method for Intercalant Diffusion (AMID) with several key differences. Most notably, AMIDR is designed to analyze the voltage response over time of “complete” pulses, pulses that last until an impedance steady state is reached. These differences allow for AMIDR to return diffusivity results with a higher degree of confidence than Galvanostatic Intermittent Titration Technique (GITT) and at a faster rate with higher state of charge (SOC) resolution than Electrochemical Impedance Spectroscopy (EIS). In this study, three different lithium transition metal oxides were studied. These active materials showed very similar kinetic behaviour that varied with dependence on the fraction of Ni atoms filling sites in the Li layer. AMIDR comes with a user-friendly python program complete with a user interface that is intended to assist other researchers in measuring active material diffusivity in a controlled, repeatable manner. This program, along with instruction on its use, the results of this study from raw data to the final key kinetic metrics, and a video summary of AMIDR design are available for download at https://github.com/MitchBall/AMIDR .
CITATION STYLE
Ball, M., Cormier, M., Zsoldos, E., Haman, I., Yu, S., Zhang, N., … Dahn, J. (2024). Method—AMIDR: A Complete Pulse Method for Measuring Cathode Solid-State Diffusivity. Journal of The Electrochemical Society, 171(2), 020552. https://doi.org/10.1149/1945-7111/ad2953
Mendeley helps you to discover research relevant for your work.