Role of cartilage-derived anti-angiogenic factor, chondromodulin-I, during endochondral bone formation

45Citations
Citations of this article
22Readers
Mendeley users who have this article in their library.

Abstract

Objective: Cartilage is a typical avasclar tissue that exhibits powerful resistance to angiogenesis or vascular invasion. We previously identified a cartilage-specific 25 kDa glycosylated protein, chondromodulin-I (ChM-I), as anti-angiogenic factor. Taking advantage of ectopic bone formation and xenograft tumour model by human chondrosarcoma cell line OUMS-27, we examined how ChM-I is involved in switching of angiogenesis in cartilage. Design: Gene expression pattern of ChM-I was examined in 4-week-old mice and mouse embryos by northern blot analysis and in situ hybridization. To evaluate the effect of ChM-I on ectopic bone formation, guanidine extracts of demineralized bone matrix were mixed with the ChM-I-bound heparin-Sepharose beads and were implanted onto the fasciae of back muscle of 6-week old nude mice. To analyse the effect of ChM-I on tumour angiogenesis, the level of ChM-I mRNA in cartilaginous tumours was assessed by competitive PCR, and compared with that of articular cartilage. Then, human chondrosarcoma OUMS-27 cells were inoculated into the back of nude mice to form a tumour about 45 mm3 in size. Recombinant ChM-I protein was administrated into OUMS-27 xenograft tumours for the initial 5 days to study its effect against tumour-angiogenesis. Results: ChM-I gene was specifically expressed in cartilage of 4-week-old mice. Eye and thymus were also identified as minor expression sites. However, during endochondral bone development, cartilage changes its character from anti-angiogenic into angiogenic prior to the replacement of calcified cartilage by bone. In embryos, ChM-I mRNA was expressed in proliferative and upper hypertrophic cartilage zones in the developing cartilaginous bone rudiments, but completely abolished in lower hypertrophic and calcified cartilage zones. Purified ChM-I protein apparently inhibited vascular invasion into cartilage induced by the implantation of demineralized bone matrix in nude mice, leading to the inhibition of replacement of cartilage. The level of ChM-I transcripts in the lower-grade chondrosarcomas was substantially reduced to several hundreds or less in the lower-grade chondrosarcomas, compared with that of articular cartilage or other benign cartilage tumours. The local administration of recombinant human ChM-I almost completely blocked tumour angiogenesis and growth in the human chondrosarcoma xenografts in mice. Conclusions: ChM-I is involved in the anti-angiogenic property of cartilage and its absence creates a permissive microenvironment for vascular invasion into cartilage under physiological and pathological conditions. © 2001 OsteoArthritis Research Society International.

Cite

CITATION STYLE

APA

Shukunami, C., & Hiraki, Y. (2001). Role of cartilage-derived anti-angiogenic factor, chondromodulin-I, during endochondral bone formation. Osteoarthritis and Cartilage, 9(SUPPL. A). https://doi.org/10.1053/joca.2001.0450

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free