Rat liver nucleoside diphosphate kinase (NDPK) and PC12 cell cytosol were used to determine whether NDPK could function as a protein kinase. NDPK was phosphorylated on its catalytic histidine using [γ-32P]ATP, and the phosphorylated NDPK separated from [γ-32P]ATP. The addition of phosphorylated NDPK to dialyzed PC12 cell cytosol resulted in the phosphorylation of a protein with a subunit molecular mass of about 120 kDa. This phosphorylation appeared to occur by a direct transfer of a phosphoryl group from the catalytic histidine of NDPK to a histidine on the 120-kDa protein. The 120-kDa protein was partially purified and shown by peptide sequencing to be ATP-citrate lyase. ATP-citrate lyase is the primary source of cytosolic acetyl-CoA. NDPK phosphorylated the histidine at the catalytic site of ATP-citrate lyase. This histidine can also be phosphorylated by ATP, and its phosphorylation is the first step in the conversion of citrate and CoA to oxaloacetate and acetyl-CoA by ATP-citrate lyase. The level of phosphorylation of PC12 cell ATP-citrate lyase by phosphorylated NDPK was comparable with that by ATP. Thus, in addition to its nucleoside diphosphate kinase activity, NDPK can function as a protein kinase.
CITATION STYLE
Wagner, P. D., & Vu, N. D. (1995). Phosphorylation of ATP-citrate lyase by nucleoside diphosphate kinase. Journal of Biological Chemistry, 270(37), 21758–21764. https://doi.org/10.1074/jbc.270.37.21758
Mendeley helps you to discover research relevant for your work.