Climate and geology overwrite land use effects on soil organic nitrogen cycling on a continental scale

1Citations
Citations of this article
12Readers
Mendeley users who have this article in their library.
Get full text

Abstract

Soil fertility and plant productivity are globally constrained by N availability. Proteins are the largest N reservoir in soils, and the cleavage of proteins into small peptides and amino acids has been shown to be the rate-limiting step in the terrestrial N cycle. However, we are still lacking a profound understanding of the environmental controls of this process. Here we show that integrated effects of climate and soil geochemistry drive protein cleavage across large scales. We measured gross protein depolymerization rates in mineral and organic soils sampled across a 4000 km long European transect covering a wide range of climates, geologies and land uses. Based on structural equation models we identified that soil organic N cycling was strongly controlled by substrate availability, e.g., by soil protein content. Soil geochemistry was a secondary predictor, by controlling protein stabilization mechanisms and protein availability. Precipitation was identified as the main climatic control on protein depolymerization, by affecting soil weathering and soil organic matter accumulation. In contrast, land use was a poor predictor of protein depolymerization. Our results highlight the need to consider geology and precipitation effects on soil geochemistry when estimating and predicting soil N cycling at large scales.

Cite

CITATION STYLE

APA

Noll, L., Zhang, S., Zheng, Q., Hu, Y., Hofhansl, F., & Wanek, W. (2022). Climate and geology overwrite land use effects on soil organic nitrogen cycling on a continental scale. Biogeosciences, 19(23), 5419–5433. https://doi.org/10.5194/bg-19-5419-2022

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free