Hemoadsorption corrects hyperresistinemia and restores anti-bacterial neutrophil function

27Citations
Citations of this article
22Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Background: Mounting evidence suggests that sepsis-induced morbidity and mortality are due to both immune activation and immunosuppression. Resistin is an inflammatory cytokine and uremic toxin. Septic hyperresistinemia (plasma resistin >20 ng/ml) has been associated with greater disease severity and worse outcomes, and it is further exacerbated by concomitant acute kidney injury (AKI). Septic hyperresistinemia disturbs actin polymerization in neutrophils leading to impaired neutrophil migration, a crucial first-line mechanism in host defense to bacterial infection. Our experimental objective was to study the effects of hyperresistinemia on other F-actin-dependent neutrophil defense mechanisms, in particular intracellular bacterial clearance and generation of reactive oxygen species (ROS). We also sought to examine the effects of hemoadsorption on hyperresistinemia and neutrophil dysfunction. Methods: Thirteen patients with septic shock and six control patients were analyzed for serum resistin levels and their effects on neutrophil migration. In vitro, following incubation with resistin-spiked serum samples, Pseudomonasaeruginosa clearance and ROS generation in neutrophils were measured. Phosphorylation of 3-phosphoinositide-dependent protein kinase-1 (PDPK1) was assessed using flow cytometry. In vitro hemoadsorption with both Amberchrome™ columns (AC) and CytoSorb® cartridges (CC) were used to test correction of hyperresistinemia. We further tested AC for their effect on cell migration and ROS generation and CC for their effect on bacterial clearance. Results: Patients with septic shock had higher serum resistin levels than control ICU patients and showed a strong, negative correlation between hyperresistinemia and neutrophil transwell migration (ρ= − 0.915, p < 0.001). In vitro, neutrophils exposed to hyperresistinemia exhibited twofold lower intracellular bacterial clearance rates compared to controls. Resistin impaired intracellular signaling and ROS production in a dose-dependent manner. Hemoadsorption with AC reduced serum concentrations of resistin and restored neutrophil migration and generation of ROS to normal levels. Hemoadsorption with CC also corrected hyperresistinemia and reconstituted normal intracellular bacterial clearance. Conclusions: Septic hyperresistinemia strongly correlates with inhibition of neutrophil migration in vitro. Hyperresistinemia itself reversibly impairs neutrophil intracellular bacterial clearance and ROS generation. Hemoadsorption therapy with a clinically approved device corrects hyperresistinemia and neutrophil dysfunction. It may therefore provide a therapeutic option to improve neutrophil function during septic hyperresistinemia and ultimately alleviate immunosuppression in this disease state.

Cite

CITATION STYLE

APA

Bonavia, A., Miller, L., Kellum, J. A., & Singbartl, K. (2017). Hemoadsorption corrects hyperresistinemia and restores anti-bacterial neutrophil function. Intensive Care Medicine Experimental , 5(1). https://doi.org/10.1186/s40635-017-0150-5

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free