Background: Brucellosis is one of the most severe widespread zoonoses caused by the Gram-negative bacterium Brucella species. The diagnosis and clinical assessment of human brucellosis are very important for the management of patients, while there is a lack of effective methods to detect Brucellae. Classical culture of Brucella species is time consuming and often fails. A simple and sensitive assay is needed for diagnosis of Brucella infection and monitoring of treatment in man. Methods: Blood samples and peripheral blood mononuclear cells (PBMCs) were collected from 154 patients hospitalized for brucellosis. Brucella antibodies were detected by Rose Bengal Plate Test (RBPT), Standard Tube Agglutination Test (SAT) and enzyme-linked immunosorbent assay (ELISA). Intracellular Brucellae were detected by blood culture and immunofluorescence staining (IFS). Results: Among 154 brucellosis patients, 59.7% (92/154) were antibody reactive by RBPT, 81.8% (126/154) by SAT and 95.5% (147/154) by ELISA, respectively. Only 3.2% (5/154) of patient blood samples resulted in positive Brucella culture, while 68.8% (106/154) carried IFS detectable Brucella antigens in PBMCs. Gender (P = 0.01) but not age (P > 0.05) was a significant risk factor. The frequency of intracellular Brucella antigens was similar between patients receiving different treatment regimens (P > 0.05). However, a significant decrease of intracellular Brucellae was observed only in patients with acute brucellosis after the third course of treatment (P < 0.05), suggesting that current regimens to treat chronic brucellosis were not effective. Conclusions: IFS appears a sensitive assay for detection of Brucella antigens in PBMCs and could be used for diagnosis and therapeutic monitoring of brucellosis in clinical practice.
CITATION STYLE
Yang, H., Zhang, G., Luo, P., He, Z., Hu, F., Li, L., … Wang, W. (2019). Detection of Brucellae in peripheral blood mononuclear cells for monitoring therapeutic efficacy of brucellosis infection. Antimicrobial Resistance and Infection Control, 8(1). https://doi.org/10.1186/s13756-019-0607-2
Mendeley helps you to discover research relevant for your work.