From Kernel Methods to Neural Networks: A Unifying Variational Formulation

0Citations
Citations of this article
11Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

The minimization of a data-fidelity term and an additive regularization functional gives rise to a powerful framework for supervised learning. In this paper, we present a unifying regularization functional that depends on an operator L and on a generic Radon-domain norm. We establish the existence of a minimizer and give the parametric form of the solution(s) under very mild assumptions. When the norm is Hilbertian, the proposed formulation yields a solution that involves radial-basis functions and is compatible with the classical methods of machine learning. By contrast, for the total-variation norm, the solution takes the form of a two-layer neural network with an activation function that is determined by the regularization operator. In particular, we retrieve the popular ReLU networks by letting the operator be the Laplacian. We also characterize the solution for the intermediate regularization norms ‖·‖=‖·‖Lp with p∈ (1 , 2] . Our framework offers guarantees of universal approximation for a broad family of regularization operators or, equivalently, for a wide variety of shallow neural networks, including the cases (such as ReLU) where the activation function is increasing polynomially. It also explains the favorable role of bias and skip connections in neural architectures.

Cite

CITATION STYLE

APA

Unser, M. (2023). From Kernel Methods to Neural Networks: A Unifying Variational Formulation. Foundations of Computational Mathematics. https://doi.org/10.1007/s10208-023-09624-9

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free