Additive manufacturing offers exciting new possibilities for improving long-term metallic implant fixation in bone through enabling open porous structures for bony ingrowth. The aim of this research was to investigate how the technology could also improve initial fixation, a precursor to successful long-term fixation. A new barbed fixation mechanism, relying on flexible struts was proposed and manufactured as a push-fit peg. The technology was optimized using a synthetic bone model and compared with conventional press-fit peg controls tested over a range of interference fits. Optimum designs, achieving maximum pull-out force, were subsequently tested in a cadaveric femoral condyle model. The barbed fixation surface provided more than double the pull-out force for less than a third of the insertion force compared to the best performing conventional press-fit peg (p < 0.001). Indeed, it provided screw-strength pull out from a push-fit device (1,124 ± 146 N). This step change in implant fixation potential offers new capabilities for low profile, minimally invasive implant design, while providing new options to simplify surgery, allowing for one-piece push-fit components with high levels of initial stability. © 2017 The Authors. Journal of Orthopaedic Research® Published by Wiley Periodicals, Inc. on behalf of the Orthopaedic Research Society. J Orthop Res 36:1508–1518, 2018.
CITATION STYLE
van Arkel, R. J., Ghouse, S., Milner, P. E., & Jeffers, J. R. T. (2018). Additive manufactured push-fit implant fixation with screw-strength pull out. Journal of Orthopaedic Research, 36(5), 1508–1518. https://doi.org/10.1002/jor.23771
Mendeley helps you to discover research relevant for your work.