With the development of advanced manufacturing technologies, the importance of functionally graded materials is growing as they are advantageous over widely used traditional composites. In this paper, we present a novel peridynamic model for higher order functional graded plates for various thicknesses. Moreover, the formulation eliminates the usage of shear correction factors. Euler–Lagrange equations and Taylor’s expansion are utilised to derive the governing equations. The capability of the developed peridynamic model is demonstrated by considering several benchmark problems. In these benchmark cases simply supported, clamped and mixed boundary conditions are also tested. The peridynamic results are also verified by their finite element analysis counterparts. According to the comparison, peridynamic and finite element analysis results agree very well with each other.
CITATION STYLE
Yang, Z., Oterkus, E., & Oterkus, S. (2021). Peridynamic modelling of higher order functionally graded plates. Mathematics and Mechanics of Solids, 26(12), 1737–1759. https://doi.org/10.1177/10812865211004671
Mendeley helps you to discover research relevant for your work.