PON1 and oxidative stress in human sepsis and an animal model of sepsis

43Citations
Citations of this article
40Readers
Mendeley users who have this article in their library.
Get full text

Abstract

Sepsis is the leading cause of death in critically ill patients. The pathophysiological mechanisms implicated in the development of sepsis and organ failure are complex and involve activation of systemic inflammatory response and coagulation together with endothelial dysfunction. Oxidative stress is a major promoter and mediator of the systemic inflammatory response. Serum PON1 has been demonstrated in multiple clinical and animal studies to protect against oxidative stress, but also to undergo inactivation upon that condition. We found decreased plasma PON1 activity in patients with sepsis compared to healthy controls or critically ill patients without sepsis; furthermore, in sepsis patients PON1 activity was lower and remained lower in the course of sepsis in the non-survivors compared to the survivors. Plasma PON1 activity was positively correlated with high-density lipoprotein cholesterol and negatively correlated with markers of lipid peroxidation. In an experimental animal model of sepsis, murine cecal ligation and puncture, the time course of plasma PON1 activity was very similar to that found in sepsis patients. Persistently low PON1 activity in plasma was associated with lethal outcome in human and murine sepsis. © Humana Press, a part of Springer Science+Business Media, LLC 2010.

Cite

CITATION STYLE

APA

Draganov, D., Teiber, J., Watson, C., Bisgaier, C., Nemzek, J., Remick, D., … Du, B. L. (2010). PON1 and oxidative stress in human sepsis and an animal model of sepsis. Advances in Experimental Medicine and Biology, 660, 89–97. https://doi.org/10.1007/978-1-60761-350-3_9

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free