Synergistic activity of doped zinc oxide nanoparticles with antibiotics: Ciprofloxacin, ampicillin, fluconazole and amphotericin B against pathogenic microorganisms

60Citations
Citations of this article
90Readers
Mendeley users who have this article in their library.

Abstract

Combination therapy of antibiotics and nanoparticles can be used against multi drug resistant microorganisms. Nanoparticles (NPs) have been reported to show antimicrobial activity. The antimicrobial activities of doped ZnO nanoparticles (ZnO NPs) were studied against fungi, gram-positive and gramnegative bacteria using the standard microdilution method. The interaction between the nanoparticle and the antibiotic was estimated by calculating the fractional inhibitory concentration (FIC index) of the combination through checkerboard assay. Experimental results demonstrated that 10% doped zinc oxide nanoparticles (ZnO NPs) exhibited the maximum antimicrobial effect in contrast with that of the 1% loading and pure ZnO nanoparticles. The enhancement in antimicrobial effect was seen when combined with antibiotic. Synergistic and additive effects were found. No antagonistic effect was found. More synergistic effect was observed when combined with ciprofloxacin than ampicillin. Fungus showed only additive effect. The results are quite in terms with MIC clearly depicting that high doping agent is most suitable for combined therapy. 100% synergistic interaction was observed in higher doping with both ciprofloxacin and ampicillin. This study provides a preliminary report of the synergistic activity of nanoparticles with antibiotics against different pathogenic strains. This provides groundwork for further studies on the combination therapy of nanoparticles with antibiotics.

Cite

CITATION STYLE

APA

Sharma, N., Jandaik, S., & Kumar, S. (2016). Synergistic activity of doped zinc oxide nanoparticles with antibiotics: Ciprofloxacin, ampicillin, fluconazole and amphotericin B against pathogenic microorganisms. Anais Da Academia Brasileira de Ciencias, 88(3), 1689–1698. https://doi.org/10.1590/0001-3765201620150713

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free