Degradation behaviors of three typical La-Mg-Ni alloys, La2MgNi9, La1.5Mg0.5Ni7 and La4MgNi19, were studied. La1.5Mg0.5Ni7 with (La,Mg)2Ni7 as main phase presents better discharge capacity and cycling stability. The three alloys suffer severe pulverization and corrosion after electrochemical cycles, which are considered to be the significant factor attributing to the capacity deterioration. However, the overall corrosion extent of the three cycled alloys aggravates successively, which is inconsistent with the result that La2MgNi9 presented poor cycling stability and also the assumption that alloy with high Mg content is easy to be corroded. The intrinsic anti-corrosion and anti-pulverization characteristics of the three alloys are mainly focused in this work. Immersion corrosion experiments demonstrate that the Mg-rich phases are more easily to be corroded. The corrosion resistance of the three alloys presents an improved trend which is inversely proportional to abundance of the Mg-rich phases. However, the anti-pulverization abilities present an inverse trend, which is closely related to the mechanical property of various phase structures. LaNi5 with the highest hardness is easy to crack, but the soft (La,Mg)Ni2 is more resistant to crack formation and spreading. Thus, the weaker corrosion of La2MgNi9 after electrochemical cycling is attributed to the better intrinsic anti-pulverization capability though the anti-corrosion is poor. As La4MgNi19 possesses excellent corrosion resistance, enhancement of the anti-pulverization ability is urgent for improvement in the cycling stability.
CITATION STYLE
Li, Y. M., Zhang, Y. H., & Ren, H. P. (2018). Degradation Characters of La-Mg-Ni-Based Metal Hydride Alloys: Corrosion and Pulverization Behaviors. Acta Metallurgica Sinica (English Letters), 31(7), 723–734. https://doi.org/10.1007/s40195-017-0696-y
Mendeley helps you to discover research relevant for your work.