Constrained data decomposition and regression for analyzing healthy aging from fiber tract diffusion properties

2Citations
Citations of this article
35Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

It has been shown that brain structures in normal aging undergo significant changes attributed to neurodevelopmental and neurodegeneration processes as a lifelong, dynamic process. Modeling changes in healthy aging will be necessary to explain differences to neurodegenerative patterns observed in mental illness and neurological disease. Driving application is the analysis of brain white matter properties as a function of age, given a database of diffusion tensor images (DTI) of 86 subjects well-balanced across adulthood. We present a methodology based on constrained PCA (CPCA) for fitting age-related changes of white matter diffusion of fiber tracts. It is shown that CPCA applied to tract functions of diffusion isolates population noise and retains age as a smooth change over time, well represented by the first principal mode. CPCA is therefore applied to a functional data analysis (FDA) problem. Age regression on tract functions reveals a nonlinear trajectory but also age-related changes varying locally along tracts. Four tracts with four different tensor-derived scalar diffusion measures were analyzed, and leave-one-out validation of data compression is shown. © 2009 Springer-Verlag.

Cite

CITATION STYLE

APA

Gouttard, S., Prastawa, M., Bullitt, E., Lin, W., Goodlett, C., & Gerig, G. (2009). Constrained data decomposition and regression for analyzing healthy aging from fiber tract diffusion properties. In Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) (Vol. 5761 LNCS, pp. 321–328). Springer Verlag. https://doi.org/10.1007/978-3-642-04268-3_40

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free