Purpose Relaxation times, transmit homogeneity, signal-to-noise ratio (SNR) and parallel imaging g-factor were determined in the human brain at 3T, 7T, and 9.4T, using standard, tight-fitting coil arrays. Methods The same human subjects were scanned at all three field strengths, using identical sequence parameters and similar 31- or 32-channel receive coil arrays. The SNR of three-dimensional (3D) gradient echo images was determined using a multiple replica approach and corrected with measured flip angle and T2∗ distributions and the T1 of white matter to obtain the intrinsic SNR. The g-factor maps were derived from 3D gradient echo images with several GRAPPA accelerations. Results As expected, T1 values increased, T2∗ decreased and the B1-homogeneity deteriorated with increasing field. The SNR showed a distinctly supralinear increase with field strength by a factor of 3.10 ± 0.20 from 3T to 7T, and 1.76 ± 0.13 from 7T to 9.4T over the entire cerebrum. The g-factors did not show the expected decrease, indicating a dominating role of coil design. Conclusion In standard experimental conditions, SNR increased supralinearly with field strength (SNR)B01.65). To take full advantage of this gain, the deteriorating B1-homogeneity and the decreasing T2∗ have to be overcome.
CITATION STYLE
Pohmann, R., Speck, O., & Scheffler, K. (2016). Signal-to-noise ratio and MR tissue parameters in human brain imaging at 3, 7, and 9.4 tesla using current receive coil arrays. Magnetic Resonance in Medicine, 75(2), 801–809. https://doi.org/10.1002/mrm.25677
Mendeley helps you to discover research relevant for your work.