Nonlinear optical properties of a series of newly-synthesized ladder-type chromophores containing oligo-p-phenylene moiety with different π-conjugated lengths were theoretically studied by numerically solving the rate equations and the field intensity equation with an iterative predictor-corrector finite-difference time-domain technique. Ab initio calculation results show that the compounds can be described by the three-level model. Based on the two-photon absorption mechanism, highly efficient optical limiting performances are demonstrated in the chromophores, which strongly depend on the π-conjugated length of the molecule. Special attention has been paid to the dynamical two-photon absorption, indicating that the parameter of the medium can affect the dynamical two-photon absorption cross section. Our numerical results agree well with the experimental measurements. It reveals that the increase in the π-conjugated length of ladder-type oligo-p-phenylene for these chromophores leads to enhanced nonlinear optical absorption. The results also provide a method to modulate the optical limiting and dynamical two-photon absorption of the compounds by changing the molecular density and thickness of the absorber.
CITATION STYLE
Zhang, Y., Hu, W., Zhao, L., Leng, J., & Ma, H. (2017). Conjugation length effect on TPA-Based optical limiting performance of a series of ladder-type chromophores. Materials, 10(1). https://doi.org/10.3390/ma10010070
Mendeley helps you to discover research relevant for your work.