Development of a computational paradigm for laser treatment of cancer

14Citations
Citations of this article
23Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

The goal of this project is to develop a dynamic data-driven planning and control system for laser treatment of cancer. The research includes (1) development of a general mathematical framework and a family of mathematical and computational models of bio-heat transfer, tissue damage, and tumor viability, (2) dynamic calibration, verification and validation processes based on laboratory and clinical data and simulated response, and (3) design of effective thermo-therapeutic protocols using model predictions. At the core of the proposed systems is the adaptive-feedback control of mathematical and computational models based on a posteriori estimates of errors in key quantities of interest, and modern Magnetic Resonance Temperature Imaging (MRTI), and diode laser devices to monitor treatment of tumors in laboratory animals. This approach enables an automated systematic model selection process based on acceptance criteria determined a priori. The methodologies to be implemented involve uncertainty quantification methods designed to provide an innovative, data-driven, patient-specific approach to effective cancer treatment. © Springer-Verlag Berlin Heidelberg 2006.

Cite

CITATION STYLE

APA

Oden, J. T., Diller, K. R., Bajaj, C., Browne, J. C., Hazle, J., Babuška, I., … Zhang, Y. (2006). Development of a computational paradigm for laser treatment of cancer. In Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) (Vol. 3993 LNCS-III, pp. 530–537). Springer Verlag. https://doi.org/10.1007/11758532_70

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free