New insights in nanoelectrodeposition: An electrochemical aggregative growth mechanism

7Citations
Citations of this article
6Readers
Mendeley users who have this article in their library.
Get full text

Abstract

Supported nanostructures represent the cornerstone for numerous applications in different fields such as electrocatalysis (fuel cells) or electroanalysis (sensors). In contrast to other methods, electrochemical deposition allows the growth of the nanostructures directly on the final support, improving the electron pathway within the substrate, nanostructure, and electrolyte. However, despite the increasing number of publications in the field, the early stages of electrochemical nanocrystal formation are still under discussion. In this chapter, we first provide a survey on the traditional approaches to study the early stages of electrochemical nucleation and growth, together with the classical theories used to understand them. Next, we describe our most recent findings which have led to reformulate the Volmer-Weber island growth mechanism into an electrochemical aggregative growth mechanism which mimics the atomistic processes of the early stages of thin-film growth by considering nanoclusters of few nm as building blocks instead of single atoms. We prove that the early stages of nanoelectrodeposition are strongly affected by nanocluster selflimiting growth, surface diffusion, aggregation, and coalescence.

Cite

CITATION STYLE

APA

Ustarroz, J., Hubin, A., & Terryn, H. (2016). New insights in nanoelectrodeposition: An electrochemical aggregative growth mechanism. In Handbook of Nanoelectrochemistry: Electrochemical Synthesis Methods, Properties, and Characterization Techniques (pp. 1349–1378). Springer International Publishing. https://doi.org/10.1007/978-3-319-15266-0_43

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free