One of the major challenges facing genome-scan studies to discover disease genes is the assessment of the genomewide significance. The assessment becomes particularly challenging if the scan involves a large number of markers collected from a relatively small number of meioses. Typically, this assessment has two objectives: to assess genomewide significance under the null hypothesis of no linkage and to evaluate true- positive and false-positive prediction error rates under alternative hypotheses. The distinction between these goals allows one to formulate the problem in the well-established paradigm of statistical hypothesis testing. Within this paradigm, we evaluate the traditional criterion of LOD score 3.0 and a recent suggestion of LOD score 3.6, using the Monte Carlo simulation method. The Monte Carlo experiments show that the type I error varies with the chromosome length, with the number of markers, and also with sample sizes. For a typical setup with 50 informative meioses on 50 markers uniformly distributed on a chromosome of average length (i.e., 150 cM), the use of LOD score 3.0 entails an estimated chromosomewide type I error rate of .00574, leading to a genomewide significance level >.05. In contrast, the corresponding type I error for LOD score 3.6 is .00191, giving a genomewide significance level of slightly
CITATION STYLE
Zhao, L. P., Prentice, R., Shen, F., & Hsu, L. (1999). On the assessment of statistical significance in disease-gene discovery. American Journal of Human Genetics, 64(6), 1739–1753. https://doi.org/10.1086/512072
Mendeley helps you to discover research relevant for your work.