We first reported the role of 5-hydroxymethyl-2-furfural (5-HMF) against hypoxia. Here, we studied the mechanism by using oxygen-dependent degradation domain (ODD)-Luc mice, which are a useful model to probe the stabilization of hypoxia-inducible factor 1α (HIF-1α). Compared with three other compounds that have been reported to have a role in stabilizing HIF-1α, 5-HMF caused stronger bioluminescence, which is indicative of HIF-1α stability in the brain and kidney of ODD-Luc mice. We further demonstrated that the HIF-1α protein accumulated in response to 5-HMF in the brains and kidneys of these mice, as well as in PC12 cells. Additionally, 5-HMF promoted the nuclear translocation of HIF-1α and the transcriptional activity of HIF-1, which was evaluated by detecting vascular endothelial growth factor (VEGF ) mRNA expression. These results suggest that 5-HMF stabilized HIF-1α and increased its activity. Considering the role of proline hydroxylases (PHDs) in negatively regulating HIF-1α stability, we explored whether 5-HMF interacts with the substrates and cofactors of PHDs, such as 2-oxoglutarate (2-OG), Fe(2+) and vitamin C (VC), which affects the activity of PHDs. The result revealed that 5-HMF did not interact with Fe(2+) or 2-OG but interacted with VC. This interaction was confirmed by subsequent experiments, in which 5-HMF entered into cells and reduced the VC content. The enhanced stability of HIF-1α by 5-HMF was reversed by VC supplementation, and the improved survival of mice caused by 5-HMF under hypoxia was abrogated by VC supplementation. Thus, we demonstrated for the first time that 5-HMF increases HIF-1α stability by reducing the VC content, which mediates the protection against hypoxia.
CITATION STYLE
He, Y. L., Li, M. M., Wu, L. Y., Zhao, T., Di, Y., Huang, X., … Zhu, L. L. (2014). Enhanced hypoxia-inducible factor (HIF)-1α stability induced by 5-hydroxymethyl-2-furfural (5-HMF) contributes to protection against hypoxia. Molecular Medicine (Cambridge, Mass.), 20, 590–600. https://doi.org/10.2119/molmed.2014.00007
Mendeley helps you to discover research relevant for your work.