Convergence speed and steady-state source separation performance are crucial for enable engineering applications of blind source separation methods. The modification of the loss function of the blind source separation algorithm and optimization of the algorithm to improve its performance from the perspective of neural networks (NNs) is a novel concept. In this paper, a blind source separation method, combining the maximum likelihood estimation criterion and an NN with a bias term, is proposed. The method adds L2 regularization terms for weights and biases to the loss function to improve the steady-state performance and designs a novel optimization algorithm with a dual acceleration strategy to improve the convergence speed of the algorithm. The dual acceleration strategy of the proposed optimization algorithm smooths and speeds up the originally steep, slow gradient descent in the parameter space. Compared with competing algorithms, this strategy improves the convergence speed of the algorithm by four times and the steady-state performance index by 96%. In addition, to verify the source separation performance of the algorithm more comprehensively, the simulation data with prior knowledge and the measured data without prior knowledge are used to verify the separation performance. Both simulation results and validation results based on measured data indicate that the new algorithm not only has better convergence and steady-state performance than conventional algorithms, but it is also more suitable for engineering applications.
CITATION STYLE
Liu, S., Wang, B., & Zhang, L. (2021). Blind source separation method based on neural network with bias term and maximum likelihood estimation criterion. Sensors (Switzerland), 21(3), 1–27. https://doi.org/10.3390/s21030973
Mendeley helps you to discover research relevant for your work.